If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2+9=-10k
We move all terms to the left:
k^2+9-(-10k)=0
We get rid of parentheses
k^2+10k+9=0
a = 1; b = 10; c = +9;
Δ = b2-4ac
Δ = 102-4·1·9
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-8}{2*1}=\frac{-18}{2} =-9 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+8}{2*1}=\frac{-2}{2} =-1 $
| X+1/2x-6=42 | | 1/4f-2=8 | | 5x-9=-(x-8) | | X=2y+1000 | | -2+w/2=-4 | | 18÷x=-2 | | 5y-8=-8 | | 5x-9=-x-8 | | 2x/x-6=42 | | 2n-2n=6 | | -(x+5)=10+4x | | 0.012x=71.461 | | 14=-2u | | -39=-w/3 | | 3(u+2)=-6u | | 10x=(8x+24) | | 1/4(128)+1/2(128)+x=128 | | 26=w/5+16 | | (w+1)+7=3(w-2)+2w | | 1/3(3x+9)=12 | | 3/2b+5=20−b | | 11/8=g-42/4 | | 7(3-x)+2=-9 | | 12k^2+23k+5=0 | | 242=16-x | | 7(x+4.9=56 | | 7x+10=1x | | 2(x+5)^2=200 | | 2(x+5)^2-50=150 | | 4j=2j-10 | | x2+x=156 | | 2(8-3x)+5=3(9x+7 |